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Abstract. The problem of atom diffraction from a reflecting magnetic diffraction grating is solved in the
thin phase-grating approximation. The general problem for scalar diffraction is modelled using a semi-
classical method in which the grating potential is separated into a reflecting term and a diffracting term.
The trajectory of the atom in the reflecting potential is solved classically and the atom wave function in the
diffracting potential found by integrating the phase change along the classical trajectory. The diffraction
orders are obtained after Fourier transforming the result. This can be done independently of the grating
potential resulting in a general formula for the diffraction efficiencies. The general result is applied to the
problem of atom diffraction from a magnetic grating. Several approximations are required to reduce the
problem to a form amenable to analytic solution. The results are compared with an accurate numerical
method.

PACS. 03.75.Be Atom and neutron optics – 42.25.Fx Diffraction and scattering

1 Introduction

Current research into optical elements for the control and
manipulation of slow-moving atoms has been driven by
the development of laser techniques for creating clouds
of ultra-cold atoms. Both evanescent wave and magnetic
mirror technology have become well established but there
has only been limited success in making and demonstrat-
ing diffraction gratings for atoms. A reflecting diffrac-
tion grating for atoms can be made from an evanescent
standing wave of light [1] and evidence of diffraction has
been observed at grazing incidence [2–4] and at normal
incidence [5] although the diffraction orders in the lat-
ter were not resolved. Another method for producing re-
flecting diffraction gratings for atoms has been proposed
based on periodic arrays of permanent magnetisation or
current-carrying wires [6]. These structures form mag-
netic fields that fall off rapidly with distance to create
magnetic mirrors that reflect [7–17] or deflect paramag-
netic atoms [18,19] (also see the review [20]). The diffrac-
tion grating is formed by applying an appropriate uniform
magnetic field to the mirror field. This produces a periodic
variation in the strength of the magnetic field [6]. The pe-
riodicity of the grating formed by this method is equal to
the periodicity of the magnetisation of the mirror. Such
devices have potential application in the coherent splitting
of atomic de Broglie waves as required in matter wave in-
terferometers.
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Conventional laser-cooling techniques produce atoms
with wavelengths of the order of 100 nm and below. Most
of the magnetic mirrors produced to date have a period-
icity greater than 10 µm, which is generally too large to
be used as diffraction gratings for atoms. However, recent
developments using microlithography have led to the pro-
duction of mirrors formed from permanent magnet arrays
with sub-micron periodicity [21]. To be used efficiently to
diffract atoms it is important to have an understanding of
the factors that affect the diffraction efficiencies. In this
regard analytical models of the diffraction process are im-
portant. In this paper we develop an approximate method
for calculating the diffraction efficiency of atoms from a
magnetic diffraction grating. The method that we present
is similar to that of Henkel et al. [22] who model the
diffraction of atoms from both Gaussian standing waves
and evanescent standing waves of light. A review of the
theory of diffraction of atoms from evanescent waves is
given in [23]. The models require an approximation that
is valid for weak potentials that do not change rapidly. In
this regard the potentials act as thin phase-gratings and
the approximation is referred to as the thin phase-grating
approximation (TPGA).

The general problem of diffraction within the TPGA is
formulated in Section 2. This yields an expression for the
reflectance of a diffracting order from any thin grating. By
limiting this to a potential with a single spatial frequency
we obtain a general formula for the diffraction efficiencies,
defined as the relative flux of atoms in a particular diffrac-
tion order. In Section 3 the general formula is applied to
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the magnetic diffraction grating. Then in Section 4, the
approximate analytical result is compared with an accu-
rate numerical method [24] for calculating the diffraction
of atoms from any reflecting periodic potential.

2 Thin phase-grating approximation

2.1 General reflecting diffraction grating

The wave properties of matter are described by the time-
independent Schrödinger equation

~2

2m
∇2Ψ(r) + (E − V (r))Ψ(r) = 0 (1)

where E is the energy of the atom of mass m, V is the
potential energy with ~ Planck’s constant divided by 2π.
We express the atom energy in terms of its kinetic energy
at a point far from the grating, E = ~2k2/2m, where
k is the wave number of the incident atom, and re-scale
the potential U(r) ≡ (2m/~2)V (r), which enables us to
write (1) in the form

∇2Ψ(r) + (k2 − U(r))Ψ(r) = 0. (2)

With these units, k is equivalent to the momentum and
k2 is equivalent to kinetic energy. We shall take the inter-
action described by (2) to be independent of the internal
degrees of freedom of the atom so that the wave function
as a scalar quantity. It then follows that the present theory
is only applicable to scalar diffraction problems.

The potential U is associated with the diffraction grat-
ing. It is responsible for reflecting the atoms as well as
causing diffraction. In the following derivation we shall
assume that the diffraction grating lies in the x–z-plane
and is periodic in x with the upwards direction along the
y-axis. The potentials that we consider are independent
of z so that the problem is essentially two-dimensional.
The problem is simplified by separating out the part of
the wave function associated with the “mirror” or reflect-
ing potential from that due to diffraction. We do this by
writing the wave function in (2) as a product

Ψ(r) = Ψm(r)Ψg(r) (3)

where the mirror function satisfies

∇2Ψm(r) + (k2 − Um(r))Ψm(r) = 0 (4)

and where Um is that part of the potential responsible for
reflection. The potential responsible for diffraction is then
Ug = U − Um. From (2–4) we find that the grating wave
function is given by

∇2Ψg(r) + 2ip(r) · ∇Ψg(r)− Ug(r)Ψg(r) = 0 (5)

where p(r) ≡ −i∇Ψm(r)/Ψm(r) represents the momentum
(or strictly wave number) of the atom wave at r in the
mirror potential. To enable us to solve the problem ana-
lytically, we shall replace this by the classical momentum

at each point on the trajectory of the atom in the mirror
potential. Since we are mixing classical and quantum con-
cepts the method becomes a semi-classical one. Note that
far from the mirror p = k, the incident wave vector.

To solve (5) we assume that ∇2Ψg(r) is suffi-
ciently small that it can be ignored, i.e. |∇2Ψg(r)| �
|2p(r) · ∇Ψg(r)|. As we discuss below, this requires the
diffracting potential to vary slowly over a distance of the
order of the atom wavelength and for the strength of the
potential to be much smaller than the kinetic energy of
the atom. In this regard the diffraction grating behaves as
a thin phase-grating. The approximation is referred to as
the thin phase-grating approximation (TPGA).

If we let px(r) = −i(∂Ψm(r)/∂x)/Ψm(r), do likewise for
py(r) and ignore ∇2Ψg(r), then (5) becomes a first-order
partial differential equation

px(∂Ψg/∂x) + py(∂Ψg/∂y) = (−i/2)UgΨg. (6)

(A similar reduction to a first-order equation was done
by Henkel et al. [25] to model diffraction from a time-
modulated evanescent wave mirror.) From the theory of
partial differential equations [26], we find that the solu-
tion to (6) lies along characteristic curves. If we use the
classical momentum for p, the characteristics are the set
of trajectories of the atom in the mirror potential deter-
mined by dy/dx = py/px. At this stage we do not need
to specify these characteristics so that p may be either
the quantum mechanical or the classical momentum. The
general solution to (6) is found by introducing an integral
operator L whose inverse is a differential operator defined
by L−1 ≡ 2p(r) · ∇. Then (6) can be written in the form

L−1Ψg(r) = −iUg(r)Ψg(r) (7)

which has a solution

Ψg(rf) = exp(−iLUg(r)) (8)

normalised to unit amplitude. The vector rf is the end
point of the integration and it is associated with the char-
acteristic curves of the integral operator L. In this for-
mula, the atom wave function is determined by the phase
change, arising from the grating potential, accumulated
along the characteristic curves. If the classical momen-
tum is used for p then the characteristic curves are the
classical trajectories of the atom in the mirror potential.
For any specified starting momentum at a given height
there is a whole class of characteristics corresponding to
different starting positions in x. Each of these character-
istics is symmetrical about a point x = x0 corresponding
to the x-position of the classical turning point associated
with the trajectory. If we shift the x-axis origin for each
characteristic to x0, then the integral operator L is inde-
pendent of the particular characteristic in the class. This
also has the advantage of making the symmetry in the
x-direction explicit, so that terms in Ug that are anti-
symmetric about x = 0 will integrate to zero. Assuming
that the grating potential is independent of z, we expand
Ug in a Fourier series across the grating of period a with
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spatial frequency κ = 2π/a

Ug(x, y) =
∑
m

um(y) exp(imκ(x+ x0)) (9)

where the x-origin is now at x0. Since x0 is a constant for
a given trajectory, it is not operated on by L. Thus with
(9) in (8) we have

Ψg(xf , yf)=exp

(
−i
∑
m

exp(imκx0)L(um(y) exp(imκx))

)
.

(10)

The diffraction orders associated with the wave function
in the TPGA can be obtained from a Fourier transform
across the line at a constant height yf after interaction
with the grating [22]. Since the final x-position xf is lin-
early related to x0, we can replace xf by x0 in the Fourier
transform. The consequence is a constant phase difference
that does not affect the diffraction efficiencies. The re-
flectance of the grating for diffraction order n is then the
Fourier transform of (10)

Rn =
1
a

∫ a

0

exp
(
− i
∑
m

exp(imκx0)

× L(um(y) exp(imκx))− inκx0

)
dx0 (11)

where the integration is over the period of the grating. If
we let Lm = L(um(y) exp(imκx)) be the number obtained
from the integral operator, and re-scale the co-ordinates
so x̃ = κx0 then (11) takes a simpler form

Rn =
1

2π

∫ 2π

0

exp

(
−inx̃− i

∑
m

Lm exp(imx̃)

)
dx̃. (12)

This is the main result of this section. Equation (12) is
a general expression for the reflectance Rn of order n
of the diffraction grating. It represents the amplitude of
the plane wave component propagating in direction θn
with respect to the grating surface normal. Since the x-
component of the momentum or wave vector of the atom
is given by kxn = kx0 + nκ, where kx0 is the initial x-
component of the momentum, we can derive an expression
for θn

sin θn = sin θ + nκ/k. (13)

This is the well-known grating equation. Here k is the ini-
tial wave number of the atom, θ is the incidence angle with
respect to the grating surface normal and θn the angle of
diffraction. Depending on the form of the grating potential
and the form of p, the integral in (12) can be evaluated
either analytically or numerically. In the following section
an analytical result is obtained for a grating with a single
harmonic.

2.2 Single harmonic diffraction grating

We consider the special case of a grating with a single
harmonic and write the grating potential in the form

Ug(x, y) = 2u1(y) cosκx (14)

where u−1 = u1. This simplifies (12) to

Rn =
1

2π

∫ 2π

0

exp (−inx̃− iL1 cos x̃) dx̃ (15)

where L1 = L(2u1(y) cosκx) and where an anti-symmetric
term operated on by L has been omitted since it integrates
to zero. The integral in (15) can be evaluated directly [27],
with the result

Rn = exp(inπ/2)Jn(L1) (16)

where Jn is a Bessel function of the first kind of order n.
The diffraction efficiency is defined by

en = (cos θn/ cos θ)R∗nRn. (17)

This represents the fraction of the total atom flux or wave
energy that is diffracted into order n. For energy conserva-
tion, or particle conservation in the case of matter waves,
the sum of the diffraction efficiencies over all orders should
be [28] ∑

n

en = 1. (18)

Violation of this condition is a sign that the diffraction
theory is either wrong, or at least inaccurate. The diffrac-
tion efficiency in the thin phase-grating approximation is

en = (cos θn/ cos θ)J2
n(L1). (19)

This is a general result for a diffraction grating with a si-
nusoidal profile, i.e. with a single harmonic. The variation
of the potential with height y and the reflecting proper-
ties of the grating determine the value of the argument
of the Bessel function and therefore determine the diffrac-
tion pattern. Note that this is a generalisation of Henkel
et al. [22] and it is similar to the result from the distorted-
wave Born approximation [23] for orders −1 and +1 if we
take the first term in a series expansion of J1.

We can make contact with the Lagrangian formula-
tion of Henkel et al. [22] if we use the classical momen-
tum for p. In classical mechanics p is proportional to the
velocity (dr/dt) so that L−1 → 2(dr/dt)∂/∂r and then
L → dr/(2dr/dt) = dt/2 which is equivalent to a time
derivative. Then L acts as a time integral in the classical
regime and (8) is equivalent to the equations (2, 6b) given
in [22].

2.3 Validity conditions

At this point we consider the range of validity of (12). It
was derived assuming that |∇2Ψg(r)| � |2p(r) · ∇Ψg(r)|.
From the solution (8), this condition becomes

|∇2LUg +∇(LUg) · ∇(LUg)| � |Ug|. (20)
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Since L is an integral operator involving the inverse of p
then its derivative is approximately |∇L| ∼ 1/p where p
is the magnitude of p. To obtain estimates of the terms
in (20) we shall consider each term on the left side of (20)
independently and shall treat p as slowly varying. The first
term becomes

|∇Ug/Ug| � p (21)

which tells us that the fractional change in the potential
with distance must be much less than the wave number of
the mirror wave. If ∆r is the typical distance over which
the potential changes at some point and λ is the wave-
length at this point then (21) is equivalent to ∆r � λ. A
typical distance for a grating with a single harmonic is its
period a, which implies that the atom wavelength must
be much smaller than the grating period, or λ/a� 1.

The second term leads to the condition

|Ug| � p2. (22)

Note that in our units, p2 represents the kinetic energy
of the atom. Far from the grating, p2 = k2 but it de-
creases as the atom approaches the classical turning point
in the mirror potential. The problem here is that for nor-
mal incidence, the kinetic energy of the atom is zero at
the classical turning point so that (22) will never be sat-
isfied, in the classical sense, for normal incidence. We get
a more accurate evaluation of criterion (22) if we use
p(r) = |∇Ψm(r)/Ψm(r)| obtained from the quantum me-
chanical solution to the reflection problem. To continue
further requires specific knowledge of the mirror poten-
tial. An example of this is given in Section 3 when we
discuss the magnetic grating.

3 TPGA for a magnetic grating

In this section we derive a formula for the diffraction effi-
ciencies in the thin phase-grating approximation (TPGA)
using the classical trajectory of the atom in the mirror po-
tential. The classical trajectories are found from the char-
acteristic curves associated with equation (6) where we use
the classical momentum for p. In addition, we linearise the
grating potential to reduce it to a single harmonic which
adds an additional approximation to the formula.

The magnetic diffraction grating can be formed from
an array of permanent magnets or current carrying wires,
periodic in x, and by applying an appropriate uniform
magnetic field in the x–y-plane. In the adiabatic approx-
imation, a paramagnetic atom has an induced magnetic
moment that maintains the same orientation with respect
to the direction of the local magnetic field. In this situa-
tion, the potential energy of the atom is proportional to
the magnitude of the magnetic field. The adiabatic state
can be enforced in regions where the mirror or grating
fields are zero by applying a uniform quantizing magnetic
field in the z-direction. Following Opat et al. [29] we can
write the magnetic field from the array of magnets up to
the first spatial harmonic as this dominates the field away

from the surfaces of the magnets. Since the energy of the
atom is proportional to the magnitude of the field, then
the potential takes the form

U(x, y)=
√
U2

0 +2UaUB exp(−κy) cosκx+U2
B exp(−2κy)

(23)

where UB is the potential associated with the magnet ar-
ray, Ua the potential arising from the uniform magnetic
field applied in the x–y-plane, U0 =

√
U2

a + U2
z with Uz

the potential arising from the uniform magnetic field ap-
plied in the z-direction and κ = 2π/a where a is the period
of the grating. The potential associated with the reflecting
part of the potential is

Um(x, y) =
√
U2

0 + U2
B exp(−2κy). (24)

The vertical component of the momentum py(y) of the
atom (or its wave number) as a function of y can be ob-
tained from (24) using energy conservation. Here we de-
fine the incident kinetic energy associated with the vertical
motion of the atom to be k2

y in the region where Um = U0;
i.e. far above the grating. The total energy in this region is
then k2

y + k2
x+U0 where the component in the x-direction

kx is constant. If the incident angle is θ and the wave num-
ber is k then ky = k cos θ and kx = k sin θ. It is convenient
to shift the y co-ordinate origin to coincide with the clas-
sical turning point of the atom in the mirror potential.
This point y0 is obtained from the conservation of energy
k2
y +U0 −Um = 0, which for UB exp(−κy)� U0 becomes

UB exp(−κy0) = k2
y + U0. (25)

To use (19) we need to reduce (23) to a single harmonic. As
it stands, (23) contains a large number of spatial harmon-
ics on account of the square root. The square root can be
represented to first order in cosκx by the first two terms of
a series expansion. There are two regions we consider that
allow this: UB exp(−κy) � U0 and UB exp(−κy) � U0.
This naturally leads to simple representations of (23, 24)
in two regions:
(i) y ≤ yc:

Um ≈ (k2
y + U0) exp(−κy) (26)

U ≈ (k2
y + U0) exp(−κy) + Ua cosκx (27)

(ii) y ≥ yc:

Um ≈ U0 (28)

U ≈ U0 + (Ua/U0)(k2
y + U0) exp(−κy) cosκx (29)

where (25) has been used to shift the co-ordinate origin
so that y = 0 corresponds to the classical turning point.
The cross-over point yc between the two regions is

yc =
1
κ

ln

(
k2
y + U0

U0

)
· (30)
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Note that condition (i) is valid close to the grating whereas
(ii) is valid far from the grating. The momentum py(y) in
these two regions is obtained from energy conservation.
We find that
(i) y ≤ yc:

py(y) = (k2
y + U0)1/2(1− exp(−κy))1/2, (31)

(ii) y ≥ yc:

py(y) = ky = k cos θ. (32)

The error in the grating potential associated with the ap-
proximation is largest at yc where the amplitude of the
first harmonic cosκx is too large by a factor of

√
2. This

overestimates the strength, or effective “groove depth” of
the grating in this region. An example of this is given in
Section 4 below. The actual effect on the diffraction effi-
ciencies of this approximation is difficult to quantify.

We need to evaluate the integral L1 = L(2u1 cosκx)
in (19). Since the momentum in the x-direction is constant
it is simpler to use x as the independent variable. The
integration follows the trajectory of the atom from the
starting point above the grating, down to the classical
turning point and then back up again. Since the reflection
process is symmetrical, we need only integrate from the
turning point upwards and then multiply the result by 2.
In addition, 2u1 cosκx is the grating potential Ug = U −
Um. Thus we have

L1 =
1

k sin θ

∫ ∞
0

[U(y(x)) − Um(y(x))]dx. (33)

The integral is divided into two parts corresponding to
the two regions (i) and (ii) above. In the first region the
grating potential is independent of y so that the integral
is trivial. In the second region it depends on y so that we
need to find y(x). Since the x-momentum is constant we
have that

x = kx

∫ y

0

p−1
y (y)dy (34)

which follows from (6). However from (32) the vertical
momentum is constant here also so that y is simply related
to x by

y = yc + (x− xc)cotan θ (35)

where xc is the cross-over point in x corresponding to
yc and cotan θ is the ratio of the y-momentum to the x-
momentum in this region. With substitution (35) and (26–
29) in (33) the integral is

L1 =
1

k sin θ

∫ xc

0

Ua cosκxdx+
(
Ua

U0

)(
k2
y + U0

k sin θ

)

×
∫ ∞
xc

exp(−κ(yc + (x− xc)cotan θ)) cos κxdx (36)

which has a solution

L1 =
Ua

kκ

{
sinκxc

sin θ
+
(
Ua

U0

)
cos(κxc + θ)

}
· (37)

To relate xc to yc, we use (34) with (31) and kx = k sin θ.
Then

xc =
k sin θ√
k2
y + U0

∫ yc

0

dy√
1− exp(−κy)

· (38)

The integral can be evaluated by a change of variable to
s = 1 − exp(−κy). After some effort and on substitut-
ing (30) for yc and (32) for ky we finally obtain

κxc =
k sin θ√

k2 cos2 θ + U0

ln
(√

k2 cos2 θ + U0 + k cos θ√
k2 cos2 θ + U0 − k cos θ

)
.

(39)

Note that, although (37) appears to diverge for waves at
normal incidence where θ = 0, we find that the ratio re-
mains finite

lim
θ→0

sinκxc

sin θ
=

k√
k2 + U0

ln
(√

k2 + U0 + k√
k2 + U0 − k

)
. (40)

The diffraction efficiencies associated with the magnetic
grating are obtained from (19) with (37, 39). These equa-
tions represent the TPGA formula for a magnetic grating.
Note that both (37) and (39) can be expressed in terms of
ratios U0/k

2 and κ/k = λ/a so that the diffraction pattern
with the TPGA depends only on the angle of incidence,
the wavelength to period ratio and the ratio of the mirror
potential to the atom kinetic energy.

In the following section we wish to compare the results
from this approximate formula with an accurate numeri-
cal procedure. Before this, we need to consider the range
of parameters for which the TPGA formula is valid. As
discussed in Section 2.3, we require the atom wavelength
to be much smaller than the grating period

λ/a� 1 (41)

which characterises the distance over which the potential
varies. The other criterion (22) is more difficult. This re-
quires the momentum calculated from the quantum me-
chanical solution to the problem. Near the classical turn-
ing point, the mirror potential is described by (26) which
decays exponentially with height. Henkel et al. [30] have
solved the quantum mechanical problem for this poten-
tial in terms of modified Bessel functions of the first kind
Ii2ν(α) that depend on ν = k cos θ/κ and where α is a
function of y. Evaluating the fractional derivative of this
at the turning point gives an estimate of the momentum
py(0) there (this is discussed in the appendix). This is a
non-zero complex number. Although the solution is com-
plicated we find that for λ/a � 1 and hence ν � 1 the
magnitude of this momentum can be fitted by a simple
function py(0) ≈ 0.690(λ/a cos θ)0.32k cos θ. Taking ac-
count of both vertical and horizontal components of mo-
mentum leads to the condition

Ua � k2
(
0.476(λ/a)0.64 cos1.36 θ + sin2 θ

)
. (42)
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4 Comparison between TPGA
and a numerical model

An accurate numerical procedure for calculating the
diffraction efficiencies of atoms from reflecting diffrac-
tion gratings has been discussed by Davis [24]. This is
based on the rigorous coupled-wave analysis (RCWA)
method developed for light diffraction from dielectric grat-
ings [31,32]. In this section we compare results from the
RCWA method using potential (23) for a magnetic grating
with the TPGA formula (19, 37, 39). In particular we look
at a few examples of regions where we expect the TPGA
formula to break down. Specifically these are where con-
ditions (41, 42) are violated.

The potential Ua is related to the magnitude of the
applied magnetic field Ba by

Ua ≈ 277mFgFZBa (43)

where mFgF is the product of the space quantisation num-
ber and the Landé factor and Z is the mass number of the
atom. The magnetic field is in Gauss and the potential is
in µm−2. In our examples we shall set mFgFZ = 1. The
results given in our examples are applicable to any para-
magnetic atom with mass number Z if our values of the
magnetic field are re-scaled by Ba → Ba/Z. In addition,
for simplicity, we shall ignore the quantizing field and set
Uz = 0.

In the first example we set λ = 0.05 µm, a = 1 µm,
θ = 0 and vary the applied magnetic field. From (41, 42)
we expect the TPGA formula to be accurate for Ba �
4.0 Gauss. The variation of three diffraction orders, 0, +2
and +4, with the applied field are shown in Figure 1a. The
TPGA formula and the RCWA show reasonable agree-
ment that becomes worse as the applied field is increased.
Significant differences are becoming apparent for fields
greater than about 3 Gauss, consistent with our estimate
from (42). The sums of the diffraction efficiencies for these
calculations are shown in Figure 1b. It is clear that, un-
like the RCWA, the TPGA formula does not satisfy flux
conservation since the diffraction efficiencies do not sum
to 1, except for very weak fields where there is negligible
diffraction. Again the failure to satisfy flux conservation
becomes progressively worse as the applied magnetic field
is increased.

In the second example we choose a value for the applied
field in the region where the TPGA is breaking down and
we increase the angle of incidence from normal incidence
towards grazing incidence. According to (42) we would
expect the value of the applied field for which the TPGA
is valid to increase and therefore the agreement between
TPGA and RCWA should improve with increasing angle.
For example, with λ = 0.05 µm and a = 1 µm, at θ = 0 we
require Ba � 4.0 Gauss for the TPGA formula to be valid
whereas at θ = 40◦ we require Ba � 26 Gauss. The results
with Ba = 5 Gauss are shown in Figure 2a. We observe
some improvement between the results of the RCWA and
the TPGA with increasing angle but the discrepancies per-
sist for large angles of incidence. Figure 2b shows the flux
conservation criterion which suggests that between 30 and
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Fig. 1. (a) A comparison between TPGA and RCWA as a
function of applied field. The parameters are θ = 0◦, λ =
0.05 µm and a = 1 µm. (b) The sum of the diffraction efficien-
cies associated with (a) including all the diffraction orders not
shown.

60 degrees the TPGA formula should be reasonably accu-
rate. If we use potentials (26–29) in the RCWA instead
of (23) we find that there is a much improved agreement
between TPGA and the RCWA (Fig. 2c). This shows that
the discrepancies are mainly due to the linearisation of the
potential.

As a final example, we investigate the diffraction effi-
ciencies as a function of the grating period, particularly as
λ/a → 1 in violation of (41). The parameters chosen for
this example are λ = 0.05 µm, θ = 0, Ba = 2 Gauss and
we vary the grating period a from 1 µm down to 0.05 µm.
The results are shown in Figure 3. Although (41) no longer
holds, the TPGA results show good agreement with the
RCWA using potential (23). The sums of the diffraction
efficiencies for the TPGA formula remain high for all these
data, at around 0.99, suggesting that the formula is accu-
rate here.

As a general observation, we find that the TPGA for-
mula is accurate when most of the diffraction orders are
small compared to the reflected order n = 0. In this
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Fig. 2. (a) A comparison between TPGA and RCWA for sev-
eral orders as a function of the angle of incidence. The param-
eters are Ba = 5 Gauss, λ = 0.05 µm and a = 1 µm. (b) The
sum of diffraction efficiencies associated with (a) including all
the orders not shown. (c) A comparison between TPGA and
RCWA both using the linearised potential. The parameters are
the same as in (a).
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Fig. 3. A comparison between TPGA and RCWA with
changes in the grating period. The parameters are Ba =
2 Gauss, λ = 0.05 µm and θ = 0◦.

situation, the grating appears almost like a mirror, the
perturbations leading to diffraction are small and the
diffraction efficiencies almost sum to 1. A possible reason
for this relates to the semi-classical nature of the method.
The TPGA formula is based on the classical trajectory of
the atom in the mirror potential. As such, it does not take
account of the evanescent waves in the diffraction grating
which may give rise to important phase shifts affecting the
amplitudes of the diffracting orders. For example, an inci-
dent wave at an angle θ > 0 becomes evanescent where the
potential energy exceeds the vertical component of the ki-
netic energy. However, an accompanying diffracted order
with θn < θ will have a greater vertical kinetic energy and
may be non-evanescent in this region. The TPGA does
not take a proper account of the non-evanescent nature of
the diffraction order in this region since it only sums the
phase shifts upwards from the classical turning point in
the mirror potential. If most of the diffracting orders are
small so that the grating is “mirror-like” then the contri-
bution to the diffraction efficiency of the evanescent region
is small and the TPGA formula should be more accurate.

Another limitation with the TPGA is that it does not
take account of focussing effects. This point is discussed
in [22]. It is possible that the waves interacting with the
grating can come to a focus within the grating. Such effects
arise from large variations in the potential over distances
compared to the atom wavelength which clearly violate
the TPGA. Focussing effects were noted by Maystre [28]
as causing failure in many early theories of optical diffrac-
tion gratings and ultimately are associated with numerical
instability. The RCWA, by its careful treatment of evanes-
cent orders, avoids these problems

The results of our comparison with the accurate nu-
merical method show that the TPGA formula is accurate
in some cases and gives rough estimates of diffraction ef-
ficiencies in others. It is apparent that the criteria for es-
timating the range of parameters for which the TPGA
formula is valid are not accurate but act only as a rough
guide as to the applicability of the formula. A better in-
dication of the reliability of the TPGA is given by the
sum of the diffraction efficiencies which should be close
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to 1. In addition, our comparisons demonstrated that the
single-harmonic approximations lead to sizeable errors but
we have not been able to provide an analytical formula for
quantifying them. The subtleties of the diffraction process
are best modelled using accurate methods which are usu-
ally based on the numerical solution of (2), such as in the
RCWA. However, despite these shortcomings, the TPGA
formula is useful for estimating the diffraction efficiencies
and for determining their dependence on the atom wave-
length, the grating period, the applied magnetic fields and
the angle of incidence. Such dependence is not always easy
to assess from a numerical procedure.

5 Summary

In this paper we have derived a general relation for the re-
flectance of a diffraction order associated with the interac-
tion of atomic de Broglie waves with a reflecting, periodic
potential. The relation has been derived using the thin
phase-grating approximation and the range of parameters
for which it is valid have been estimated. A formula for
the diffraction efficiencies from a potential with a single
spatial frequency has been derived and has been applied
to the problem of atoms diffracting from a magnetic grat-
ing. To obtain an analytical solution, the grating poten-
tial is approximated by a single harmonic. This can result
in errors that are difficult to quantify. The results from
the analytical formula were compared with those from an
accurate numerical method. This showed that the ana-
lytical formula can provide reasonably accurate results in
some cases and gives the general trends in others. The pa-
rameters for which the analytical formula is accurate are
not always consistent with the estimated range. Based on
our comparison with the numerical method, the formula
is more accurate when the diffraction efficiencies for all
the diffraction orders sum close to 1, which is necessary
to conserve atom flux.

Appendix

Here we discuss the mathematical form of the momentum
function

py(y) ≡ −i(∂Ψm(r)/∂y)/Ψm(r) (A.1)

that involves the fractional derivative of the wave function
for the atom reflecting from the perfect mirror potential

Um(y) = (k2
y + Ua) exp(−κy). (A.2)

Here y = 0 is the classical turning point of the atom’s mo-
tion. Henkel et al. [30] have solved the wave equation for
an atom in such a potential in terms of Bessel functions
Ii2ν(α(y)). Their solution (Eq. (17) in [30]) contains the
interference between downward and upward propagating
waves. For our purpose we need only the upward propa-
gating wave proportional to I−i2ν(α(y)) where, in our no-
tation, ν = ky/κ and α(y) = 2ν exp(−κy/2). The function

I−i2ν(α(y)) can be written as a power series in α

I−i2ν(α) =
∞∑
n=0

1
n!Γ (n+ 1− i2ν)

(α
2

)2n−i2ν

(A.3)

where Γ here denotes the Euler gamma function. We use
this series expansion for Ψm(y) in (A.1), take the deriva-
tive and expand the gamma function to n = 0 using the
relation Γ (n+1− i2ν) = (n− i2ν)!Γ (1− i2ν). Introducing
ζ ≡ exp(−κy) gives the result

py(y) = ky

(
1 +

i
ν
F (ν, ζ(y))

)
(A.4)

where

F (ν, ζ) =

∞∑
n=0

nν2nζn

n!(n− i2ν)!
∞∑
n=0

ν2nζn

n!(n− i2ν)!

· (A.5)

After numerically evaluating this function at the turn-
ing point we find that, for ν � 1 the magnitude of the
momentum can be fitted by a simple function py(0) ≈
0.690ν−0.32k cos θ.
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